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LETTER TO THE EDITOR 

The critical dimension for lattice animals 

D S Gaunt 
Wheatstone Physics Laboratory, King's College, Strand, London WC2R 2LS, England 

Received 11 February 1980 

Abstract. Recent field theoretical calculations for lattice animals by Lubensky and Isaacson 
yield d, = 8 as the critical dimension and provide a first-order €-expansion for the exponent 
8. Support for these predictions may be obtained by extending our previous work on the 
exact enumeration of site and bond animals on a d-dimensional simple hypercubic lattice to 
arbitrary d. 

Recently, a field theory of branched polymers in the dilute limit has been presented by 
Lubensky and Isaacson (1979). Their results for branched polymers in a good solvent 
also apply to the statistics of lattice animals, which are important in the theory of 
percolation (Stauffer 1979). Assume asymptotic forms of the usual kind 

for the total number of animals with b bonds or s sites. The growth parameters A b  and A, 
are lattice-dependent, and increase with increasing coordination number. Numerical 
evidence (Sykes and Glen 1976, Sykes et a1 1976, Gaunt et a1 1976, Gaunt and Ruskin 
1978) suggests that the exponent 8 is the same for both bond and site animals, and for all 
lattices of a given dimension. In the field theory, this result is consistent with the loop 
fugacity being zero at the animals' fixed point (Lubensky and Isaacson 1979). Luben- 
sky and Isaacson find that the Gaussian approximation breaks down below a critical 
dimension d,=8. For dimensions d s 8 ,  mean field theory is valid and hence 8 =$. 
Alternatively, 8 = $ can be obtained (Gaunt et al 1976, Gaunt and Ruskin 1978) from 
the exact results of Fisher and Essam (1961) for a Cayley tree. For d < d,, Lubensky 
and Isaacson (1979) have derived an €-expansion for 8, 

( E  = 8 - d ) ,  (2) e = Z  1 2 - 1 2 € + .  * * 

to first order in E .  The aim in this Letter is to test the validity of d, = 8 and the 
€-expansion (2) by extending the exact enumeration work of Gaunt et a1 (1976) and 
Gaunt and Ruskin (1978). 

For site animals, Gaunt et a1 (1976) enumerated N, on d-dimensional simple 
hypercubic lattices for d = 2 to 7, and s d 9 for d = 6 and 7, s C 10 for d = 5 ,  s d 11 for 
d = 4, s d 13 for d = 3, and s s 19 for d = 2. Similarly, for bond animals, Gaunt and 
Ruskin (1978) enumerated Nb for b d 10 for d =4 ,  5 ,  6 and 7, b d 11 for d = 3, and 
b s 15 for d = 2. In order to test d, = 8, we have extended our data to d = 8 and 9 for 
s s 9 and b s 10. To understand how this was done, consider first the site problem. One 
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may write for all dimensions 

where the coefficients Af, A; and A; are given explicitly as functions of s by Gaunt etal 
(see (2.4)). Knowledge of these three functions, together with the exact enumeration 
data mentioned above, is sufficient to calculate successive Ai numerically for all s s 9. 
These are presented in table 1.  A similar procedure may be followed for the bond 
problem. The analogue of (3) is 

and general expressions for a:, a! and a$ are given by Gaunt and Ruskin (see (2.4)). 
Numerical values of a i  for all b c 10 are given in table 2. The coefficients in tables 1 and 
2, together with equations (3) and (4), enable one to calculate NS(d)  fors  s 9 and Nb(d)  
for b c 10 fur arbitrary dimension. We give the explicit values for d = 8 and 9 in table 3, 
since these are the numbers we study numerically. 

The data in table 3 have been analysed by following exactly the same procedure, 
based upon ratio and Pad6 approximant techniques (Gaunt and Guttmann 1974), as 
was used for d s 7 (Gaunt et a1 1976, Gaunt and Ruskin 1978). Estimates of A and 8, 
and values of A for both site and bond animals are presented in table 4 for 2 s d c 9. 

Table 3. Total numbers of site and bond animals per lattice site for simple hypercubic 
lattices of dimensions d = 8 and 9. 

Site animals Bond animals 
d = 8  d = 9  d = 8  d = 9  

1 1 8 9 
8 9 120 153 

120 153 2 360 3 417 
2 276 3 309 53 936 88 785 

49 204 81 837 1 356 384 2 540 385 
1 156 688 2 205 489 36 449 288 77 712 933 

28 831 384 63 113 061 1028383408 2 496 998 097 
750 455 268 1887993993 30118187174 83 307 378 987 

20196669078 58441956579 908484362016 2863316024021 
100 816 360 575 435 28 066 925 011 960 

The estimates, A'"', of A are obtained by truncating the appropriate l/c+-expansion, 
where cr = 2d - 1, after the last term (see Gaunt and Ruskin, (3.7) and (3.5)). The 
results for d = 7 (site problem only), 8 and 9 are new; the rest are taken from Gaunt etal 
(1976) and Gaunt and Ruskin (1978), and are repeated here in order that the overall 
behaviour may more easily be discerned. 

It can be seen from table 4 that the estimates of 8 for site animals are in broad 
agreement with the corresponding estimates for bond animals, but have larger 
uncertainties. Accordingly, we focus our discussion on bond animals, since it is for 
these that our evidence is most compelling. In figure 1, the estimates of 8 are plotted 
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Table 4. Summary of estimates of critical parameters for site and bond animals for simple 
hypercubic lattices of dimensions d = 2 to 9. 

Site animals Bond animals 
8 A (0)  (3 A A (c) d A  

4.06 * 0.02 
8.35 k0.04 

13.35 i 0 . 2  
18.8 *0.4 
24.4 i 0 . 9  
29.5 k1.5 
35.0 k l . 8  
40.5 i 2 . 2  

1.875 
7.568 

13.148 
18.673 
24.169 
29.648 
35.116 
40.578 

1.00k0.05 
1.50+0*09 
1.90 * 0.15 
2.25 * 0.30 
2.5 k0.4 
2.3 k0.3 
2.4 1 0 . 3  
2.45 i 0.3 

5.210i0.006 
10.62 i O . 0 8  
16.3 i 0 . 4  
22.1 k0.8 
27.75 k l . 0  
33.25 i l . 5  
39.0 *2.0 
44.5 12 .7  

5.250 
11.230 
16.931 
22,522 
28.060 
33,567 
39.057 
44.534 

1~OOi0*01 
1 5 5 i 0 . 0 5  
1.90k0.07 
2.2 * O . l  
2.3 i 0 . 2  
2.4 k0.2 
2.5 i 0 . 2  
2.6 i 0 . 3 5  

d 

Figure 1. Estimates of 8 from bond animals plotted against lattice dimensionality d. The 
broken curve is a smooth interpolation; the full lines show field theory predictions. 

against d. It is easy to draw a smooth curve (shown broken) through all the estimates for 
d s 8 and which passes through the point 8 = 0, d = 1. (The exact value 8 = 0 for d = 1 
follows trivially from the result Nb(d = 1) = 1 for all b.) The field theory predictions are 
drawn as full lines in figure 1; namely, the first-order €-expansion result (2) for d s 8, 
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and 8 = 5 for d 3 8. It should be noted that the uncertainties in 8 are sufficiently large to 
just admit d, = 6 ,  which is the critical dimension for percolation processes. However, 
the results clearly favour d, = 8 (over d,  = 6 ) ,  and we think this figure provides quite 
strong support for the field theoretical calculations of Lubensky and Isaacson (1979). 
We understand that this conclusion is further supported by some recent work of Harris 
and Walker (1980). 

I am grateful to T C Lubensky for a preprint of his work and for helpful correspondence. 
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