The critical dimension for lattice animals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 13 L97
(http://iopscience.iop.org/0305-4470/13/4/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 04:49

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The critical dimension for lattice animals

D S Gaunt
Wheatstone Physics Laboratory, King's College, Strand, London WC2R 2LS, England

Received 11 February 1980

Abstract

Recent field theoretical calculations for lattice animals by Lubensky and Isaacson yield $d_{\mathrm{c}}=8$ as the critical dimension and provide a first-order ϵ-expansion for the exponent θ. Support for these predictions may be obtained by extending our previous work on the exact enumeration of site and bond animals on a d-dimensional simple hypercubic lattice to arbitrary d.

Recently, a field theory of branched polymers in the dilute limit has been presented by Lubensky and Isaacson (1979). Their results for branched polymers in a good solvent also apply to the statistics of lattice animals, which are important in the theory of percolation (Stauffer 1979). Assume asymptotic forms of the usual kind

$$
\begin{equation*}
N_{b} \sim b^{-\theta} \lambda_{b}^{b}, \quad N_{s} \sim s^{-\theta} \lambda_{s}^{s} \tag{1}
\end{equation*}
$$

for the total number of animals with b bonds or s sites. The growth parameters λ_{b} and λ_{s} are lattice-dependent, and increase with increasing coordination number. Numerical evidence (Sykes and Glen 1976, Sykes et al 1976, Gaunt et al 1976, Gaunt and Ruskin 1978) suggests that the exponent θ is the same for both bond and site animals, and for all lattices of a given dimension. In the field theory, this result is consistent with the loop fugacity being zero at the animals' fixed point (Lubensky and Isaacson 1979). Lubensky and Isaacson find that the Gaussian approximation breaks down below a critical dimension $d_{\mathrm{c}}=8$. For dimensions $d \geqslant 8$, mean field theory is valid and hence $\theta=\frac{5}{2}$. Alternatively, $\theta=\frac{5}{2}$ can be obtained (Gaunt et al 1976, Gaunt and Ruskin 1978) from the exact results of Fisher and Essam (1961) for a Cayley tree. For $d<d_{\mathrm{c}}$, Lubensky and Isaacson (1979) have derived an ϵ-expansion for θ,

$$
\begin{equation*}
\theta=\frac{5}{2}-\frac{1}{12} \epsilon+\ldots \quad(\epsilon=8-d) \tag{2}
\end{equation*}
$$

to first order in ϵ. The aim in this Letter is to test the validity of $d_{c}=8$ and the ϵ-expansion (2) by extending the exact enumeration work of Gaunt et al (1976) and Gaunt and Ruskin (1978).

For site animals, Gaunt et al (1976) enumerated N_{s} on d-dimensional simple hypercubic lattices for $d=2$ to 7 , and $s \leqslant 9$ for $d=6$ and $7, s \leqslant 10$ for $d=5, s \leqslant 11$ for $d=4, s \leqslant 13$ for $d=3$, and $s \leqslant 19$ for $d=2$. Similarly, for bond animals, Gaunt and Ruskin (1978) enumerated N_{b} for $b \leqslant 10$ for $d=4,5,6$ and $7, b \leqslant 11$ for $d=3$, and $b \leqslant 15$ for $d=2$. In order to test $d_{c}=8$, we have extended our data to $d=8$ and 9 for $s \leqslant 9$ and $b \leqslant 10$. To understand how this was done, consider first the site problem. One
Table 1. Coefficients \boldsymbol{A}_{ξ}^{s} for site animals.

s	$\xi=1$	2	3	4	5	6	8
2	1						
3	4	1					
4	32	17	1				
5	6912	8648	61	1			
6	153664	254800	129288	21225	758	1	1
7	4194304	8749056	6160640	1688424	154741	2723	1123143
8	136048896	343901376	313921008	125055400	20762073	9908	1
9							

Table 2. Coefficients α_{ξ}^{b} for bond animals.

b	$\xi=0$	1	2	3	4	5	6	7	8	9
1	1									
2	4	1								
3	32	20	1							
4	400	420	86	1						
5	6912	10368	4164	370	1					
6	153664	301840	186552	38205	1626	1				
7	4194304	10223616	8637760	2934560	343380	7310	1			
8	136048896	396809280	427708848	207353960	43517697	3086049	33464	1		
9	5120000000	17408000000	22888035968	14551923200	4552863040	628406112	27948467	155444	1	
10	219503494144	853070397696	1326024805120	1048268558064	442224105756	95175488385	8975840816	255716421	730532	1

may write for all dimensions

$$
\begin{align*}
& N_{1}(d)=1, \\
& N_{s}(d)=\sum_{\xi=1}^{s-1} A_{\xi}^{s}\binom{d}{s-\xi} . \quad(s \geqslant 2), \tag{3}
\end{align*}
$$

where the coefficients A_{1}^{s}, A_{2}^{s} and A_{3}^{s} are given explicitly as functions of s by Gaunt et al (see (2.4)). Knowledge of these three functions, together with the exact enumeration data mentioned above, is sufficient to calculate successive A_{ξ}^{s} numerically for all $s \leqslant 9$. These are presented in table 1. A similar procedure may be followed for the bond problem. The analogue of (3) is

$$
\begin{equation*}
N_{b}(d)=\sum_{\xi=0}^{b-1} \alpha_{\xi}^{b}\binom{d}{b-\xi} \quad(b \geqslant 1) \tag{4}
\end{equation*}
$$

and general expressions for $\alpha_{0}^{b}, \alpha_{1}^{b}$ and α_{2}^{b} are given by Gaunt and Ruskin (see (2.4)). Numerical values of α_{ξ}^{b} for all $b \leqslant 10$ are given in table 2. The coefficients in tables 1 and 2 , together with equations (3) and (4), enable one to calculate $N_{s}(d)$ for $s \leqslant 9$ and $N_{b}(d)$ for $b \leqslant 10$ for arbitrary dimension. We give the explicit values for $d=8$ and 9 in table 3, since these are the numbers we study numerically.

The data in table 3 have been analysed by following exactly the same procedure, based upon ratio and Padé approximant techniques (Gaunt and Guttmann 1974), as was used for $d \leqslant 7$ (Gaunt et al 1976, Gaunt and Ruskin 1978). Estimates of λ and θ, and values of $\lambda^{(\sigma)}$, for both site and bond animals are presented in table 4 for $2 \leqslant d \leqslant 9$.

Table 3. Total numbers of site and bond animals per lattice site for simple hypercubic lattices of dimensions $d=8$ and 9 .

	Site animals		Bond animals	
	$d=8$	$d=9$	$d=8$	$d=9$
N_{1}	1	1	8	9
N_{2}	8	9	120	153
N_{3}	120	153	2360	3417
N_{4}	2276	3309	53936	88785
N_{5}	49204	81837	1356384	2540385
N_{6}	1156688	2205489	36449288	77712933
N_{7}	28831384	63113061	1028383408	2496998097
N_{8}	750455268	1887993993	30118187174	83307378987
N_{9}	20196669078	58441956579	908484362016	2863316024021
N_{10}			28066925011960	100816360575435

The estimates, $\lambda^{(\sigma)}$, of λ are obtained by truncating the appropriate $1 / \sigma$-expansion, where $\sigma=2 d-1$, after the last term (see Gaunt and Ruskin, (3.7) and (3.8)). The results for $d=7$ (site problem only), 8 and 9 are new; the rest are taken from Gaunt et al (1976) and Gaunt and Ruskin (1978), and are repeated here in order that the overall behaviour may more easily be discerned.

It can be seen from table 4 that the estimates of θ for site animals are in broad agreement with the corresponding estimates for bond animals, but have larger uncertainties. Accordingly, we focus our discussion on bond animals, since it is for these that our evidence is most compelling. In figure 1, the estimates of θ are plotted

Table 4. Summary of estimates of critical parameters for site and bond animals for simple hypercubic lattices of dimensions $d=2$ to 9 .

d	Site animals			Bond animals		
	λ	$\lambda^{(\sigma)}$	θ	λ	$\lambda^{(\sigma)}$	θ
2	4.06 ± 0.02	1.875	$1 \cdot 00 \pm 0.05$	$5 \cdot 210 \pm 0 \cdot 006$	$5 \cdot 250$	$1 \cdot 00 \pm 0 \cdot 01$
3	8.35 ± 0.04	$7 \cdot 568$	1.50 ± 0.09	10.62 ± 0.08	11.230	1.55 ± 0.05
4	13.35 ± 0.2	$13 \cdot 148$	$1 \cdot 90 \pm 0 \cdot 15$	16.3 ± 0.4	16.931	1.90 ± 0.07
5	18.8 ± 0.4	18.673	$2 \cdot 25 \pm 0 \cdot 30$	22.1 ± 0.8	$22 \cdot 522$	$2 \cdot 2 \pm 0 \cdot 1$
6	24.4 ± 0.9	$24 \cdot 169$	2.5 ± 0.4	27.75 ± 1.0	28.060	$2 \cdot 3 \pm 0 \cdot 2$
7	29.5 ± 1.5	29.648	$2 \cdot 3 \pm 0.3$	33.25 ± 1.5	33.567	2.4 ± 0.2
8	$35 \cdot 0 \pm 1 \cdot 8$	$35 \cdot 116$	$2 \cdot 4 \pm 0.3$	$39 \cdot 0 \pm 2 \cdot 0$	39.057	$2 \cdot 5 \pm 0 \cdot 2$
9	$40 \cdot 5 \pm 2 \cdot 2$	$40 \cdot 578$	$2 \cdot 45 \pm 0 \cdot 3$	$44.5 \pm 2 \cdot 7$	$44 \cdot 534$	$2 \cdot 6 \pm 0.35$

Figure 1. Estimates of θ from bond animals plotted against lattice dimensionality d. The broken curve is a smooth interpolation; the full lines show field theory predictions.
against d. It is easy to draw a smooth curve (shown broken) through all the estimates for $d \leqslant 8$ and which passes through the point $\theta=0, d=1$. (The exact value $\theta=0$ for $d=1$ follows trivially from the result $N_{b}(d=1)=1$ for all b.) The field theory predictions are drawn as full lines in figure 1 ; namely, the first-order ϵ-expansion result (2) for $d \leqslant 8$,
and $\theta=\frac{5}{2}$ for $d \geqslant 8$. It should be noted that the uncertainties in θ are sufficiently large to just admit $d_{\mathrm{c}}=6$, which is the critical dimension for percolation processes. However, the results clearly favour $d_{c}=8$ (over $d_{f}=6$), and we think this figure provides quite strong support for the field theoretical calculations of Lubensky and Isaacson (1979). We understand that this conclusion is further supported by some recent work of Harris and Walker (1980).

I am grateful to T C Lubensky for a preprint of his work and for helpful correspondence.

References

Fisher M E and Essam J W 1961 J. Math. Phys. 2 609-19
Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3, ed. C Domb and M S Green (New York: Academic) pp 181-243
Gaunt D S and Ruskin H 1978 J. Phys. A: Math. Gen. 11 1369-80
Gaunt D S, Sykes M F and Ruskin H 1976 J. Phys. A: Math. Gen. 9 1899-911
Harris A B and Walker J 1980 to be published
Lubensky T C and Isaacson J 1979 Phys. Rev. A $202130-46$
Stauffer D 1979 Phys. Rep. 54 1-74
Sykes M F, Gaunt D S and Glen M 1976 J. Phys. A: Math. Gen. 9 1705-12
Sykes M F and Glen M 1976 J. Phys. A: Math. Gen. 9 87-95

